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I .  I n t r o d u c t i o n  

The starting point in Geometric Quantization (Kir i l lov-Kostant-Souriau theory, cf. [7,9]) 

is a regular contact manifold whose Boothby-Wang fibration [ 1 ] has a covering of a coadjoint 

orbit of a given Lie group as base space. In this paper we are concerned with the case in which 

the group acts transitively on the contact manifold by diffeomorphisms that preserves the 

contact form (Homogeneous Contact Manifolds). More specifically, the paper is devoted to 

give explicit  methods of  construction of  such manifolds. In particular many of the previously 

known related results [3,4,8,10] are covered and some of  them are sharpened. 

We first consider the following slightly more general situation. Let M be a differentiable 

manifold and G a Lie group which acts transitively on M. Let us consider a Pfaff system on 

M, composed of invariant forms, whose characteristic system is trivial. Such a differential 

system is called homogeneous nondegenerate Pfaff system. 

In the present paper we classify the homogeneous nondegenerate Pfaff sy stems (HNDPS). 

This classification is constructive, in the sense that all HNDPS for a given Lie group can be 

* Partially supported by a grant of the DGICYT. 
1 E-mail: diazmir@ccuam3.sdi.uam.es. 

0393-0440/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 0393-0440(95)0002 1-6 



48 A.D. Miranda~Journal of Geometry and Physics 19 (1996) 47-76 

explicitly determined from subsets of the dual of its Lie algebra. We will also see that they 

give rise to principal fibre bundles whose base spaces are multihamiltonian spaces. These 

are generalizations of Hamiltonian spaces, and are classified in this paper. When restricted 

to Hamiltonian spaces, this classification is equivalent to that of Kostant. 

These general results are then applied to the case in which the Pfaff system consists of 

a single form, thus gaining an insight into the homogeneous contact manifolds. These can 

be obtained from certain elements of the dual of the Lie algebra of the given Lie group that 

are called quantizable forms. 

The structure of the present paper is the following. Sections 2 and 3 are devoted to notation 

and some preliminary results. 

The first statement of the classification is given in Section 4. Given a connected Lie group 

G, and a subset, P, of the dual of its Lie algebra, we associate to P a family of subgroups 

of G, N j .  The elements of P project on each G / N  j ,  thus giving rise to a HNDPS. It is 

proved that each HNDPS is equivalent, in a natural way, to one of these. 

If one wants to use such a classification for an explicit construction of the HNDPS, the 

main difficulty is to determine the groups N~. In Section 5 we prove that the N~p are the 

kernels of a family of homomorphisms, thus obtaining practical methods to determine the 

N j .  This idea leads to another form of the classification. 

Multihamiltonian spaces are defined and classified in Section 6. Its main interest, from 

the point of view of the present paper, is that any "regular" HNDPS is the total space of a 

principal fibre bundle, with abelian structural group, whose base space is a multihamiltonian 

space. These principal fibre bundles and the connections that the given HNDPS defines on 

it are studied in detail in Section 7. 

The explicit methods that can lead to the determination of the quantizable forms (i.e. the 

homogeneous contact manifolds) of a given Lie group are given in Section 8. This section 

also includes other related results. 

In Section 9, the preceding results are applied to the universal covering group of Poincar6 

group, whose homogeneous contact manifolds describe the relativistic elementary particles 
in the sense of geometric quantization. 

2. Notation 

All differentiable manifolds appearing in this paper are assumed to be C °°, finite dimen- 
sional, Hausdorff and second countable. 

The set consisting of the differentiable vector fields on a differential manifold, M, is 
denoted by D(M).  The set of differential k-forms on M is denoted by O k (M). 

Let X e D(M),  09 e Ok(M).  We denote by i(X)o9 the interior product of X by o9 and 
by L(X)O9 the Lie derivative of o) with respect to X. 

Let G be a Lie group. The set consisting of the left invariant vector fields on G, provided 
with its canonical structure of Lie algebra, will be denoted by G. We shall denote by G* the 
dual of G. G* is canonically identified with the set consisting of the left invariant 1-forms 
on G. 
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The coadjoint  representation is the homomorphism Ad* : g ~ G --+ Adg c Aut(G*) 

given by (Ad~(ot))(X) = c~(Adg-1 (X)) for all o t~  G*, X 6 G.  

Let M be a differentiable manifold and G a Lie group acting on M on the left (resp. on 

the right). Given an element, X, of  G,  we denote by XM the vector field on M whose flow 

is given by (the diffeomorphisms associated by the action to) {Exp(- tX):  t E ~} (resp. 

{ExptX: t c R}). XM will be called the infinitesimal generator of  the action associated 

to X. 

A principal fibre bundle having M as total space, B as base and G as structural group, 

will be denoted by M(B,  G). 

3. Homogeneous nondegenerate systems 

Let M be a differentiable manifold. We call k-system on M any set consisting of  differ- 

ential k-forms on M. A k-system on M, S, will be said to be nondegenerate when, for all 

x c M, the set consisting of  those v c TxM such that i (v)w = 0 and i(v) do2 ----- 0 for all 

02 ~ S, consists of 0 alone. 

Let M be a contact (resp. symplectic) manifold. If S is a l -system (resp. 2-system) 

containing a contact (resp. symplectic) form, then S is nondegenerate. 

Let S be a nondegenerate 1-system on M. We denote by A(S) the set consisting of 

X ~ D(M)  such that i (X)  do) = 0 and di(X)o2 = O, for all co ~ S. The function i(X)o2 is 

constant on each connected component of  M for all X ~ A(S), o9 ~ S. 

Lemma 3.1. A(S) is an abelian Lie subalgebra of D(M).  

Proof A(S) is obviously a vector subspace of  D ( M )  and, for all X, Y ~ A(S) and o9 c S, 

we have 

i([X, r ] ) o 2  = ( L ( X ) i ( Y )  - i(Y)L(X))O2 

= i(X)di(Y)o2 - i (Y)(d i (X)  + i(X)d)o2 = 0 

and, in a similar way, i ([X, Y]) dw = O. Thus, since S is nondegenerate, we have [X, Y] = O. 

E] 

Example 3.2. Let 09 be a contact form on a connected manifold, M, and S = {w}. It is 

a well known fact that there exists a unique Z(w) ~ D(M)  such that i (Z (w) )w  = 1, 

i (Z(w))  dw = O. Thus A(S) is the (1-dimensional)  subspace of  D ( M )  generated by Z(o9). 

In fact, if A ~ A(S) then A = (i(A)o2)Z(w). 

A G-homogeneous (nondegenerate) k-system is a triple, (M, S, G),  where M is a con- 

nected manifold, S a (nondegenerate) k-system on M and G is a connected Lie group acting 

transitively on M on the left by w-preserving diffeomorphisms for all w c S. 
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L e m m a  3.3. Let S be a 1-system on M consisting of  a single 1-form, 02. Then S is nonde- 

generate if  and only if  o9 is a contact form or do9 is symplectic. 

Proof The "if" part is obvious. In order to prove the "only if" part, take x ~ M and assume 

that (dog)x p ~ 0, (dog)x p+I = 0. Thus the subspace, V, of  TxM composed of  v such that 

i (v) (dog)x = 0 has dimension n - 2p, where n = dim M. Let us denote by o9~ the restriction 

of  ogx to V. Since S is nondegenerate it follows that the kernel of  J must be {0}. Then we 

have d i m V <  l, s o t h a t 2 p < n  < 2 p + l , i . e . n = 2 p i f n i s e v e n a n d n = 2 p + l i f n i s  

odd. In any case p is independent of  x c M. 

If n : 2p, then (do)) p is a volume element, i.e. do) is symplectic. 

I f n  = 2 p ÷  1, then we have d imV = 1. Let u l be a nonzero element of  V and 

{Ul, u2 . . . . .  un} a basis of  TxM. Thus ogx A (dog)xP(Ul . . . . .  Un) coincides, up to a nonzero 

factor, with [ogx(Ul)] • [(dog)xP(U2 . . . . .  Un)]. But ogx(Ul) = og'(ul) ¢ 0. On the other 

hand the relation (dog)x p ~ 0 implies that there exists i l . . .  in-I C {1 . . .  n }  such that 

(dog)P(uil . . . . .  Uin ~) ~ O. But this cannot be the case if any of  the i were 1. Thus 

(dog)xP(U2 . . .  Un) ~ O. It follows that o9 A (do)) p is volume element, i.e. o2 is a contact 

form. [] 

If S consists of  a single differential form, w, we denote (M, S, G) simply by (M, o9, G). 

A homogeneous nondegenerate 1-system (M, o9, G) where ca is a contact form is said to 

be a Homogeneous Contact Manifold. If do) is symplectic, then (M, 02, G) is said to be a 

Homogeneous Exact Symplectic Manifold. 

Let (M, S, G) and (M I, S r, G) be G-homogeneous k-systems. An isomorphism from 

(M, S, G) onto (M I, S', G) is a G-equivariant diffeomorphism, f ,  from M onto M I, such 

that f* (S ' )  = S. This defines an equivalence relation in the set composed by the G- 

homogeneous k-systems. The equivalence class of  (M, S, G) will be denoted by IM, S, GI. 

If  an equivalence class has a nondegenerate representative, then any other representative 

is also nondegenerate. The set consisting of  the equivalence classes of  G-homogeneous 

nondegenerate k-systems will be denoted by Ek (G). 

In Section 4 we shall classify the set E1 (G). The following result will be useful in this 

context. 

Let [M, S, G] E El (G) and let x c M. We shall denote by 2 the map from G onto M 

defined by sending each g to gx. We denote by Gx the isotropy subgroup of  G at x. 

Since each o2 E S is invariant by the action of  G on M, it follows that 2"o9 is a left 
invariant 1-form on G. Thus 2"(S) can be considered as a subset of  G*. 

L e m m a  3.4. The Lie algebra of  the isotropy subgroup of  G at x,  Gx, is 

G__ x = {Y E G__ : i(Y)Q?* og) = O, i(Y)d(-2?* og) = O, Vo9 E S}. 

Proof For all Y, Z E G, o) 6 S, we have 

i ( Y ) ~ * w )  : (~*og)(Y) = (-2?* og)e(Ye) = ogx(--(YM)x), 

[i (Y) d(~'*og)] (Z) = (d(x*og))e (Ye, Ze) "~- dogx ( -  (YM)x, -- (ZM)x). 
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Since the action is transitive, it follows that TxM = {(ZM)x: Z e G}. Since S is non- 

degenerate, one thus sees that we have (YM)x = 0 if and only if i(Y)(-£*w) = 0 and 

i(Y)d(-~*w) = 0 for all w ~ S. [] 

4. Classification of the homogeneous nondegenerate 1-systems 

Let G be a connected Lie group. Let P be a subset of  G* containing some nonzero 

element• Thus we define 

G p = {X E G: L (X)3  = O, V3 E P}, 

N p = {X E G p : i (X )3  = 0 ,¥3  E P}. 

Since P contains some nonzero element we have Np # G. 

Lemma 4.1. G e is a Lie subalgebra o f  G, N e is an ideal o f  Gp and G e / N e  is abelian. 

Proof  We shall prove that [_G e, _Gp] C _Np. If X, Y 6 _G e, 3 6 P, then we have 

i([X, Y])3 = L ( X ) i ( Y ) 3  - i ( Y ) L ( X ) 3  = 0 

and 

L([X,  Y])3 = L ( X ) L ( Y ) 3  - L ( Y ) L ( X ) 3  = O. [] 

Now we define 

Gp = {g c G : A d g 3 = 3 , ¥ 3  E P]. 

Since we have 

Adg6(Y)  = 6(Adg- i  Y) = 6 ( R g . L g _ I , Y )  = Rg6(Y)  

for all g 6 G, 3 6 G*, Y 6 G, it follows that 

Gp = {g E G : R g 3 = 3 , ¥ 3  E P}. 

G e is a closed subgroup of  G and its Lie algebra is composed of  those Y E G such that 

R*ExptV3 = 3 for all 3 6 P, t 6 N. Since the flow of  the left invariant vector field Y is 

{RExpt~': t 6 •}, it follows that the Lie algebra of  Gp is Gp. Obviously Gp contains the 

centre of  G, hence __G e contains the centre of  G. 
We shall denote by { G ~,: i 6 I (P)  } the set consisting of  those subgroups of G p containing 

the component of  the identity in G e. We assume that 0 ~ I (P)  and that G ° is the component 
of the identity in Gp.  Thus G ° is the component of  the identity in G~, for all i 6 1 (P).  

We shall denote by N ° the connected Lie subgroup of  G whose Lie algebra is Np. 

If N ° is closed, then we shall denote by {N J :  j E J (P )}  the set consisting of  the closed 
subgroups of  Gp  whose Lie algebra is Np. Here J ( P )  is a set of  indices containing 0. N O 

is the component of  the identity of  each NJe and also an invariant subgroup of  G ° .  
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Before proving the following lemma, note that if 8 is a left invariant 1-form and X a left 

invariant vector field, then we have L (X)8 = i (X) dS. This is a consequence of  the fact that 

i(X)8 is a constant function. Thus we have 

G p = tX E G:i(X)d8 = O, V8 E P}. 

The following result is more or less obvious, but useful. 

Lemma 4.2. Let (P) be the subspace of G* generated by P and let g E G. Then we have 
G(p) = G_p, N(p) = N p, G(p) = Gp, N~p) = N 0, G Ad;(p ) -~- Adg(Gp) ,  N Ad;(p ) : 

j !  . . !  
Adg(N_p), GAdS(p) = ag(Gp) and {NAd;(p). j E J(Adg(P))} = {ag(Nlp): j E J (P)} .  

Let us denote by Ko(G) the set consisting of  the pairs (P,  N J) ,  where P is such that N O 

is closed and j c J ( P ). 
In Ko(G) we define an equivalence relation as follows. We say that (P,  N j )  is equivalent 

j, j, . 
to (P ' ,  Np,) if there exists g e G such that p t  = Ad~(P) and Np, = ag(NJp). The 

equivalence class of  (P,  N]~) will he denoted by IP, N j ] and the quotient set by K(G). 
We shall define a bijective map from K(G) onto El(G) but first we shall give some 

lemmas. 

Lemma 4.3. Let (P,  N fi ) E Ko( G). Then for all 8 E (P), there exists a unique G-invariant 

i-form, w J(8),  on GIN j such that pj  (wJ ( 8 ) ) = 8, where pj is the canonical map from G 

onto G / N j .  

Proof Since N~ C Gp, 8 is Adg-invariant for all g e N ~ .  Also we have i(X)8 = 0 for 

all X e _Np. [] 

For all (P, N j )  E Ko(G), we shall denote PJ = {w~,(8): 8 ~ P}. 

Lemma 4.4. Let ( P, Nip) E Ko( G). Then ( G / N j ,  P/ ,  G) is a homogeneous nondegener- 

ate l-system for the canonical action of G on G / NJp. 

Proof. We only need to prove that P / i s  nondegenerate. Let v be a tangent vector to G/NJp 

at gN j such that i(v)(o~J(8)) = 0 and i(v) d(wJ(8))  = 0 for all 8 E p. We must prove 

that v = 0. Since the action is transitive and the co j (8) are invariant, we only need to give 

a proof in the case where g is the identity element, e, of  G. Let X ~ G be such that the 
infinitesimal generator of  the action associated to X, X j , takes the value v at N j .  Then we 

have for all Y ~ G 

i ( x ) 8  = i(Xe)~e = i(Xe)(p]a,~(8))e = i ( - v ) ( o ~ ( 8 ) )  = O, 

( i (X)  dS)(Y) = dSe(Xe, Ye) = d(w~(8))(v, (YJ)Nj ) = O. 
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Hence we have X 6 Np so that v = (XJ)Nj = O. 
P 

53 

[] 

L e m m a  4.5. Let (P, NJ), (Q,N~) ~ Ko(G). Then we have IP, g J l  = IQ, N~?] if and 

only iflG/Nil, P?, G] = [G/N~, O], GI. 

Proof Assume that IP, N J [  = IQ, N~I- Let g 6 G be such that Q = Adg(P), N~ =: 

ag(NJe). Then we define a map, bg, from G/N j into G/N~ by sending hN j to hg-' N~. 
This is a well defined map. Since we have Pk o Rg I ---- bg o pj and pj admits differen- 

tiable local cross sections everywhere, it follows that bg is differentiable. Actually bg is a 

diffeomorphism whose inverse can be defined in a similar way. 

On the other hand we have for all ~ 6 Q, 

* * k R* * k R* 3 = A d ;  16 pjbgogQ(~)= g_iPkogQ(6)= g-I 

p) bgog Q(~) = p~ ogJ (Ad~ ~ 8). Since pj is a submersion we obtain butAdg ~3c P, sothat • • k 

bgog~2(~ ) = ogJ(ad;_l~  ). The relation * k bg(Ql) = P( follows. 

Since bg is G-equivariant for the canonical actions, we see that bg is an isomorphism 

from (G/N j,  P~, G) onto (GINS, Q], G). 

Conversely, let f be an isomorphism from (G/Nil, P J, G) onto (G/N~, Q], G). Let 

g c G be such that f(Uil) -= gU~. 
The relation Ad g ( Q ) = P follows from f o pj =-- Pk o Rg. On the other hand, because of 

the equivariance of  f ,  the isotropy subgroup at Nil E G/NJp, which is N ; ,  must coincide 

with the isotropy subgroup at gNU, which is ag(N~). Hence (Q, N~) is equivalent to 

(P,  N J).  E] 

Now we define a map,/z l, from K (G)into Ej ( G ) b y  sending I P, N J l t o  I G/Nil, P(, G I. 
Because of  Lemma 4.5 this is a well defined injective map. We now go on to prove that this 

is an onto map. 

Let IM, S, GI ~ E1 (G). Take x e M and denote by ~ the map defined by sending g E G 

to gx ~ M. Thus we define a subset, P,  of  G* by P = {2-*o9: w c S}. 

As a consequence of  Lemma 3.4 we have Np = G x. Thus N o is the component of the 

identity in the isotropy subgroup, Gx, at x. Since Gx is closed, it follows that N O is closed. 

The form ~*w is Adg-invariant for all g e Gx. Hence we have Gx C Gp, so that there 

exists j c J(P) such that Gx = N~. 
Thus, the map f defined by sending gNil ~ G/Nil to gx c M is an equivariant dif- 

feomorphism. We also have f o pj ----- 2] where pj is the canonical map from G onto 

G/N j. Hence we have p~f*o9 = Y*o9 = p~(wJ (x* w)) for all o9 ~ S. This proves that 

f is an isomorphism from (G/Nil, P J, G) onto (M, S, G). As a consequence, we have 

#liP, uJ  l = IG/N j,  PJ, GI = [M, S, GI. H e n c e # l  i s a n o n t o m a p .  
We have thus proved the following theorem which gives us a classification of  El (G). 
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T h e o r e m  4.6. The map defined by sending I P, NJ l • K (G) to I G /N  j ,  P J, G I • El (G) 
is a bijection. 

R e m a r k  4.7. The canonical map from G/N ° onto G/N j ,  Poj, is a covering map and we 

have p~j(~oJ(3)) = wo(3) for all 3 • P. 

When G is simply connected G/N ° is the universal covering space of each of the G/N j .  

5. Construct ing  h o m o g e n e o u s  nondegenera te  Pfaff  sys tems 

In order to explicitly construct the HNDPS for a given Lie group, G, one needs to know 
the subsets, P, of G* such that N O is closed and, for these subsets, the subgroups N~,. To 

obtain this information by a direct use of the definition is not an easy task in general. In this 

section we reduce the problem to the search for some homomorphisms, which is in general 

much easier. 
Let H and A be Lie groups and C a homomorphism from H onto A. Thus the transpose, 

t(dC) of dC is a linear map from A* into H* whose image will be denoted by (dC). 

Let P be a subset of G* containing some nonzero element and i • I(P). We consider 
homomorphisms, C, from G% onto connected abelian Lie groups such that (dC) is the 

subspace of G~ generated by the restrictions to Gp of the elements of P. The set composed 

by these homomorphisms will be denoted Homie. Given a connected abelian Lie group, A, 
the subset of Homip composed of the homomorphism whose image is A, will be denoted 

Hom% (A). If C • Hom% (A), dC is onto, so that t ( d C )  is injective thus giving an isomor- 

phism from A* onto the subspace generated by the restrictions to G e of the elements of P. 
Let K~(G) be the set consists of the triples (P, G~, C) such that C • Homip. 
If (P, G%, C) • K6(G), the kernel of dC is N e and the kernel of C is closed. Hence 

N O is closed and there exists j • J(P) such that KerC = NJe, i.e. (P,KerC)• Ko(G). 
Thus, each element of K~(G) gives rise to a HNDPS. The main objective'of this section 
is to prove that each HNDPS can be obtained in this way. Some other results are proved in 
order to be used later. 

i' Two elements of K6(G), (P, G%, C) and (P ' ,  Gt,,, C'),  are said to be equivalent if 

there exists g • G and an isomorphism f from C(Gip) onto C'(Gip,) such that pt = 
i t Adg(P), G e, = ag(Gte) and C' = f o C o ag-i. This defines an equivalence relation 

in K6(G). The equivalence class of (P, G%, C) will be denoted by IP, G~o, CI and the 
quotient set by K'(G). 

i ! L e m m a S . l .  Let (P, Gie, C), (P', Gp,, C') • K~(G). Then we have IP,KerCI = 
• i '  [P',KerC'I if andonly iflP, G~, C[ = [P', Ge,, Cr[. 

• j ,  

Proof Let j • J (P) ,  j '  • J (P') be such that Ker C = NJe,Ker C' = N p , ,  and assume that 
• . ,  j ,  • 

[ P,  N~ r = I P',  N~,  1. Then there exists g • G such that P'  = Adg (P) and Np, ---- ag (N~). 
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Let {al . . . . .  ar} be a basis of  A, where A is the image of C. Let YI " "  Yr ~ G__p 
be such that dC(Yk) = ak for all k = 1 . . . . .  r.  Thus, for all h 6 G% there exists 

tl . . .  tr such that C(h) = Exp(t lal ) .  .. Exp(trar) : Exp(dC(tl Y1))'" "Exp(dC(trY~)) = 
C(Exp(q Yl) '"  "Exp(trYr)). As a consequence, all the elements of G% can be written in 

the form E x p ( t l Y i ) E x p ( q Y l ) . .  "Exp(trYr)n,  where tl . . .  tr E ~ and n E N~. But 

g Exp(tl Yl ) "" .Exp(tr Yr)ng -1 = Exp(q Adg(Y l ) ) ' .  "Exp(tr Adg(Yr))gng - l  , and, because 
i' of Lemma 4.2, we have Gp, = Adg(G), so that Exp(tk Adg(Yk)) ~ G °,  C Gp,. Thus 

ag(Gip) C Gip,. 

In a similar way we obtain ag-, (Gi'e,) C Gip,, so that G%, = ag(Gie). 

i j (7i' I M j '  Now we define a map, f v  from G e / N  P onto by means of f l ( h N ; )  = ~p , l~ ,p~  
. t  

ghg-  1 NIp,. This is a well defined Lie group isomorphism, whose inverse can be defined in a 

similar way. We have C ~ : f3 o f l  o f 2  ! o C Oag-i, where f2( resp. f3) is the isomorphism 

from Gip/NJ(resp. ~i '  /~J '~ onto the image of  C(resp. C ' )  canonically defined by C 

(resp. C') .  

The "if" part is immediate. [] 

As a consequence of  Lemma 5.1 we see that the map,/,t2, defined by sending I P,  G%, C I E 

K'(G)  to IP,KerCI ~ K(G)  is a well defined injective map. We shall now prove that this 

is an onto map. 

L e m m a  5.2. Let (P,  N j )  E Ko( G). Then, for all Y ~ G__p, there exists a unique differen- 

tiable vector field on G / N Je, Z j ( Y ), such that (pj ).  Y = Z j ( Y ). Moreover, for all cr E P. 

we have ~o j (~ )( Z j (Y) ) : ~r (Y),and i ( Z j (Y) ) d(w j ((7)) = 0. 

Proof Let g E G, n ~ N j ,  Y 6 __Gp and X c G. Then we have 

~ ( y )  -_ ~ , ( Y g , )  = (o~ (a ) ) gN~ ( (Pj )* Yg,,), 

0 = (i(Y)drT)(X) : (d(wJ(r~)))gN~,((pj),Yg n, (pj) ,Xgn).  

Since P(  is a nondegenerate 1-system, it follows that the above relations define uniquely 

(p j ) ,  Yg,. Consequently, (p j ) ,  Ygn does not depend on n. 

Thus we define Zip(y) by means of  (ZJp(Y))gN~ = (pj) ,Yg.  Since pj admits local cross 

sections everywhere, Z J ( Y )  is differentiable. El 

Let (P, N Jr,) ~ Ko(G) and let D be the connected component of  N j ~ Gp/NJp in 

Gp/NJe. The stabilizer of  D, by the canonical action of  G p  on Gp/NJp, is a subgroup of 

~i(j) is the stabilizer Gp which contains G ° .  Thus, there exists i ( j )  ~ I ( P )  such that ~ e  

of  D. 

R e m a r k  5.3. If  P consists of  a single l-form, a ,  and ~o¢ (~) is a contact fo rm,  there exists 

Y E G such that a ( Y )  = 1 and Z j (Y) is the canonical vector field associated to co j (or) in 
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the sense of  Example 3.2. If  the differential of  to j (a)  is symplectic, _Np = Gp, and all the 

z J  (Y) are O. 

r~i(J) / MJ provided with its homogeneous differ- L e m m a  5.4. The open submanifold D is ,_, e / '" e 
entiable structure. 

Proof The action of  Gp on  Gp/NJp gives us a differentiable action of  Gi(p j) on D. It is 

enough to prove that this action is transitive. 

Given two arbitrary points of  D, there exist g E Gp which transform the first of  these 

points into the second. Since g(D) must be a connected component of  G p / N  j ,  and g(D) n 

D -fi 13 we have g(D) = D so that g e Gi(p j). [] 

L e m m a  5.5. N j is a normal subgroup of Gi(p j) and Gi(p j) = G pNp.° J 

i(j) j Proof Since Gp /Np is connected, it follows that the component of  the identity in Gi(p j) 
rTi(J) 0 J acts transitively on it. Thus ,~p ---- GpNp.  

Now let n ~ N j ,  g e Gi(p j). In order to prove that g- lng  e N j it suffices to prove it 

when go e G ° .  Thus, we only need to prove that (Exp X ) - l n  Exp X E Nip for all X e _G e. 

But n Exp tX  is the integral curve of  X having n as initial value, so that n(Exp t X ) N  j is the 

integral curve of z J ( x )  having N j as initial value. The same holds for all n c N j .  Hence 

we have n(ExptX)NJp = (Exp tX)N j for all t e R, and the result follows. [] 

f-~i(J)/MJ Thus ~ ?  : " e  is a connected Lie group whose Lie algebra is isomorphic to G p / N  ?. 
i(j) j Since G_p/N_p is an abelian Lie algebra, it follows that G e / N  e is an abelian group. 

¢-~.i(J)lMJ In the following, the Lie algebra of  ~ p / , ,  p will be identified to G p/Np by means of  

the canonical isomorphism. Thus, for all X e Gp we have E x p ( X  + N p) = (Exp X ) N  j .  

L e m m a  5.6. The map, q, from P into the dual, (G_p/N_p)*, of Ge / N_p defined by 

q (a ) (X  + N_s) = a (X)  

for all a e P, X e G_p is a well defined map, whose image contains a basis of the dual of 
C p/Np. 

Proof For all a e P, q ( a )  is a well defined linear functional on G_p/Np. 
" "  - -  " "  O " r  - -  Now let a 1, . ,  o "r E P be such that {allGe, ., IN e} is a maximal linearly inde- 

pendent subset of  {a I_ap:a e P }. Then we have dim(G_p ~N p) = r and q (a  1) . . . . .  q (a r) 
is linearly independent. [] 

• i(j) j Let C~ be the canonical homomorphism from Gi(? j) onto Gp /Np. Thus we 
have d C J ( X )  ---- X + _Np for all X e Gp. Hence, the transpose of  dC j , t ( d C ~ ) ,  

is such that t (dC~)(q(a) )  = a[_c v, for all a E P. Then (P,  Gi(p j), CJp) e K~(G) and 
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gTi(j) • 
#2(IP ,  ~ p  , C~ I) = I P, N~ I. Thus we have the following theorem. 

Theorem 5.7. The map defined by sending IP, Gie, CI E K'(G) to IP,gerCI ~ K (G) is 
a bijection. 

This gives us an alternative form of the classification of El (G). 

We quote here, for future reference, the following lemmas. 

L e m m a  5.8. Let j ~ J ( P) and YI . . . . .  Yr ~ Gp a basis of a supplementary of Np. Thus 

G~ j) = {(Expt IY1)' '" (Exptryr)n:n C N j ,  t 1 . . . . .  t r C ~}. 

To prove this lemma one can proceed as in the proof of Lemma 5.1 with C = C~, A = 

G%J)/NJ e, ak = Yk + N_e, i = i( j) .  

L e m m a 5 . 9 .  Let j E J ( P ) , i  E I(P).  We have i = i ( j )  if and only if N j C Gip and 

Gip/N j is a connected subset of G t, ~Nip. 

• i J Proof. The "only if" part is obvious. If N~ C G% and G1,/N1, is connected, thus G ° 

acts transitively on Gie/N j .  It follows that for all g c G% there exists h 6 G ° such that 

0 J = G i ( j )  Since 0 J " g N J = h N J .  HenceGiecG1,N1,  . G1,N1,CG~theresult follows. El 

6. Multihamiltonian spaces 

If (P,  G%, C) 6 K6(G), and P is completely regular in a sense to be explained in 

Section 7, (G/KerC)(G/Gip, C(Gie)) is a principal fibre bundle with abelian structural 

group. There is a family of  connections on this bundle canonically associated with P. The 

differentials of  the elements of  P are projectable on the base space and define a 2-system 

on it, having some special properties. This 2-system is related to the curvature forms of the 

connections. Thus, the HNDPS gives rise to principal fibre bundles with connections and 

the base spaces of  these bundles have a special geometrical structure. The study of  these 

spaces is the objective of  this section. 

A multihamiltonian G-space is a triple (B, D, G) where B is a connected differentiable 

manifold, G is a connected Lie group and D is a set whose elements are pairs ($2,)~) where 

$2 is a differential 2-form on B and ~. is a map from G into C~(B)  such that: 
(1) (B, Dl, G) is a G-homogeneous nondegenerate 2-system, where D1 is the set consisting 

of  the first components of  the elements of  D. 
(2) i (Xs)S2 = d()~(X)) for all (S2, ,k) 6 D, X c G, where XB is the infinitesimal generator 

of  the action of  G on B associated with X. 
(3) ,~ is R-linear for all (1"2, Z) ~ D. 

(4))~([X, Y]) = I2(YB, XB) for all (I"2, ~.) 6 D, X, Y 6 G. 
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Lemma 6.1. Let (B, D, G) be a multihamiltonian G-space and ($2,)~) E D. Then $2 is 
closed. 

Proof Since £2 is G-invariant, it follows that L(XB)$2 = 0 for all X c G. Thus condition 

(2) implies i (XB) d$2 = 0. Since the action is transitive, it follows that d$2 = 0. [] 

Let (B, D, G) be a multihamiltonian G-space where D is composed by a single element 
($2, 23. Then $2 is a nondegenerated closed 2-form, i.e. a symplectic form. Conditions (3) 
and (4) tell us that Z is a homomorphism of Lie algebras when Coo(B) is provided with the 

Poisson bracket associated to $2. Hence (B, ~2, ~., G) gives us a Hamiltonian space in the 

sense of Kostant [7]. 

This section will be devoted to the classification of the multihamiltonian G-spaces (up 
to isomorphism). This classification generalizes some of the well known Kostant results on 
Hamiltonian G-spaces. 

Let (B, D, G) and (B', D',  G) be multihamiltonian G-spaces. An isomorphism from 

(B, D, G) onto (B', D',  G) is a pair (f ,  h), where f is a G-equivariant diffeomorphism 
from B onto B' and h is a bijective map from D onto D'  such that (h(~.))(X) o f = 2.(X) 

for all ($2, ~.) ~ D, X 6 G, where h()0 is the second component in h($2, )0. 
Let (f ,  h) be an isomorphism as above,($2, ~.) ~ D and let us denote by h($2) the first 

component in h($2, 2.). Then we have f*(h($2)) = $2. In fact, for all X, Y e G, we have 

[f*(h($2))l(XB, YB) = h($2)(XB,, YB') o f = [h(Z)([Y, Xl)] o f 

---- X([Y, XI) = $2(XB, YB). 

Isomorphy defines an equivalence relation in the set of multihamiltonian G-spaces. 
The equivalence class of (B, D, G) will be denoted by [B, D, GI and the quotient set 

by Mham(G). 
Let Mho(G) be the set composed by the pairs (P, G~,) where P is a subset of G* such 

that Gp ~ G and i E I ( e ) .  Two elements, (P, G%) and (Q, G~),  of Mho(G) are said 
i '  to be equivalent if there exists g 6 G such that Q = Adg(P) and G O = ag(G~p). The 

equivalence class of (P, G~,) will be denoted by I P, G/pI and the quotient set by Mh(G). 
We shall give a classification of multihamiltonian G-spaces (up to equivalence) by giving 

a bijective map from Mh(G) onto Mham(G). 
Let (P, Gip) ~ Mho(G) and let Pi be the canonical map from G onto G/G~.  The 

definitions of__G e and G% entail the following lemma. 

Lemma  6.2. For all cr E P there exists a unique G-invariant 2-form $2ie(Cr) on G/G% 
such that p* ($2~ (¢r)) = do. 

To each (tr, X) ~ e x G we associate a function, ~ ( a ,  X), on G/Gip by means of 
[~.~o(o, X)I(gG~) = Adgcr(X). 

The function )~/p (a, X) is C °o since 2./p (a, X) o Pi c Coo(G) and Pi admits local cross 
section everywhere on G~ Gip. 
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Let ,k% (or) be the map defined by sending each X E G to )~% (a, X). It is a R-linear map. 
Then we have the following lemma. 

L e m m a  6.3. ( G / Gip, {(£2~(cr), ~.%(¢r)): ¢r E P }, G) is a multihamiltonian G-apace. 

Proof In order to show that (G/Gip, {S2~,(cr): cr E P}, G) is a homogeneous nondegen- 

erate 2-system,we only need to prove that { ~ ( a ) :  o E P} is nondegenerate. Since each 

I2~,(o) is invariant and the action is transitive we only need to prove that this condition 
holds at a point. 

We identify the tangent space to G/Gip at G% with G / G p  in the canonical way. Let 

X ~ G be such that i(X + Gp)F2~(cr) = 0 for all cr ~ P. Then we have i(X) do = 0 for 
a l i a  E P, i.e. X +_Gp = G p .  

Let us denote by X~ the infinitesimal generator of the action of G on G~ Gip associated 
to X E G. Then, for all X, Y E G and cr E P, we have 

[d()~/p (a, X))(yip)l(gGip) 

= d / d t b = 0 ( ) ~ ( a ,  X))(Exp(- tY)gGip)  

= d/dtlt=o(AdgCr)(AdexptyX) = (Adg~r)([Y, X]) 

= d~r(Adg-,X, Adg ,Y) = [$2~(cr ) ( -X%,-Yip) l (gGip) ,  

i " Hence we have i(Xip)F2ip(Cr) = d(k%(cr, X)) and since (pi),(Adg-i X)g = --(Xp)gG, ~. 

lZ~.(m [x ,  Y])](gGip) = (Adger)(IX, Y]) = [$2~,(cr)(Y~, xip)](gGip). [] 

L e m m a  6.4. Let(P, Gip), (Q, GJQ) c Mho(G). Then we have IP, G~I  = IQ, G~I  if and 

only iflG/Gip, { ( ~ , ( a ) ,  X%(a)):(~ E P}, GI = IG/GJQ, {(O~(co), X~(co)): co E Q}, GI. 

Proof We first prove the "only if" part. Let g E G be such that Q = Adg(P) and G ~  = 

ag(Gip). Thus we define a map, bg, by sending hGip E G/Gip to hg -I GJQ E G/GJQ. This 

is a well defined map. Since we have qj o Rg t = bg o Pi, and Pi admits local cross sections 
everywhere on its image, it follows that bg is differentiable. Actually bg is a diffeomorphism 
whose inverse can be defined in a similar way. Also we see that bg is G-equivariant. 

Now we shall prove that (b u, A) is an isomorphism of multihamiltonian G-spaces, where 
• " i * J * A maps ( ~ ( a ) ,  Up(a) )  t o  (~?Q(AdgtT),)~o(Adga)). In fact, for all X E G, h E G and 

a E P, wehave  

[2.Q(adg¢7, j * X)] o bg(hGip) = Ad~°~ ,ad~a(X) = ad~cT(X) = [2.ip(cT, X)](hGip). 

Conversely, let (f ,  h) be an isomorphism from (G/G~p, {($2~(a), Up(a)) :  (7 E P}, G) 

onto(G/GJQ, {(F2JQ(w),)JQ(W)):w 6 Q}, G). 

Let g E G be such that f(G%) = gGJQ. I f a  E P, there exists o -/ E Q such that 

h(f2~ (a) ,  Up (e r ) ) - - - (c2J(ar ) ,  ~J(cr ' ) ) .  Then we have 

~ (X)  [2.~,(m X)I(G%) J ' f(Gip) * ' = = [ ~ . O ( O  , X ) ]  o = AdgC* (X) 
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for all X E G, so that a = Adgtr'. It follows that AcI~_,(P) C Q. Since f - l(GJp) = 

g-lGip (because of  the equivariance) we have adg(Q) C P. Thus P = Adg(O). 

Since f is equivariant, it follows that the isotropy subgroup at gGJo (i.e. gGJag -1) must 

coincide with the isotropy subgroup at G% (i.e. G%). Hence we have G% = ag(GJa). [] 

Theorem 6.5. The map from M h ( G ) into M ham ( G ) defined by sending I P, G ip I to I G / G ~, , 
{(I2~,((r), ~.~,((~): (r 6 P}, GI is a bijection. 

Proof Because of  the preceding lemma this is a well defined injective map which will be 

denoted by/3.  We only need to prove that 13 is onto. Let (B, {($2a, ~.a):a E A}, G) be a 

multihamiltonian G-space, where A is an index set. For each a c A we define a map, 

from B into G* by means of  Z[~_a (b)](X) = [~.a(X)](b), for all b ~ B, X E G. The map ~-a 

is differentiable. In fact, let X1 . . . . .  Xn be a basis of  G,  which provides us with a coordinate 

system of G* by identifying G** with G. Each Xi o ~  is C °° since it coincides with )~a (Xi). 
For all b 6 B, X, Y 6 G, we have 

d/dt It=0 [~--a ((Exp(-t  Y))b)] (X) 

---- d/dtlt=O[Xa(X)]((Exp(-tY))b) = (YB)b(~.a(X)) 

= [I2a(XB, YB)](b) = [Xa([Y, X])](b) = [X_.a(b)]([Y, X]) 

= [~(b)](ady(X)) = d/dt]t=O[Z_a(b)]((Ex p tady)(X)) 

= d/dt It=0 [Z__a (b)] (AdExp t v (X)) = d/dt It=0 (Ad*Exp(_t y)[X_a (b)]) (X). 

But this implies that (~a),YB = YG*, where YG* is the infinitesimal generator of  the 

coadjoint action associated with Y. Since G is connected, it follows that X_a is equivariant. 

Now fix b E B and denote P ---- {Z_a(b): a E A}. Since all X a are equivariant, it follows 

that the isotropy subgroup at b, Gb, is contained in G p. 

On the other hand we have 

(i(YB)b•a)((XB)b) : ()~a([X, Y]))(b) = [Xa(b)]([X, Y]) = [L(Y)(X_a(b))](X) 

for all a E A, X, Y E _G. Since {$2a:a E A} is nondegenerated and each $-2 a is closed, it 

follows that we have (YB)b = 0 if and only if L(Y) X(~a(b)) = 0 for all a E A. Hence the 

Lie algebra of  Gb is Gp. Thus there exists i E I (P)  such that Gb = G%. 
The proof will be finished when we prove that (B, {(~'2a, Xa): a E A}, G) is isomorphic 

to (G/G%, { ( n ~ ( a ) ,  •%(a)):o ~ P}, G). 

Let h be the map from {(f2a, Xa):a ~ A} into {($2~(cr), X~(o')):o" E P} defined by 

h(f2a,)~a) ---- (~2/p X(~a(b)), 2-% X(~a(b))). This map is obviously onto. Later on we shall 
prove that h is also injective. 

Let b be the equivariant diffeomorphism from G/Gb onto B defined by sending gGb to 
gb. Then, for all a E A, X E G, we have 

~,a (X) o -b(gGip) = [Z_. a (gb)] (X) = (Ad~ (Z_. a (b)))(X) ---- [ ;~  (Za (b), X)] (gGip) 

so that 
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x.(x) o ~ = [Xie(b_a(b))l(X). 

61 

(1) 

As a consequence of (1) we see that the relation h(12a, )~a) = h(S2a', )~a') implies )~a(X) o 
= )~a' (X) o b. Then we have )~a = )~a' and this relation implies easily that S2a = I2a,. We 

thus see that h is injective. 
The pair (b, h -1) is an isomorphism from (G/Gie, {(S2~(cr), )~ie (c~)): cr 6 P}, G) onto 

( B ,  {(,-('2a, Xa):a E A}, G) because o f ( l ) .  [] 

Remark 6.6. Let P be such that Gp 56 G.  There exist k E I (P)  such that Gp _7_ Gkp. 
Let us denote 12p(cr) = I2~(o) ,  ~.p(cr) = X~,(cr) for all cr E P. Thus (G/Gp,  {(~p(cr) ,  

Xp(cr)): cr E P}, G) is a multihamiltonian G-space. 

The canonical map from G/Gip onto G/Gp,  pi e, is a covering map. We have S2/p (cr) = 
(p~)*I2p(cr) and ~ie(a, X) = ,kp(cr, X) o p~ for all cr c P, X E G. 

The canonical map from G/G ° onto G/Gip, p° i , is a covering map and we have $2° (cr) = 
(p°)*12~(cr), ~.° (or, X) = ~.ie (~r, X) o p0 for all ~ s P, X E G. 

When G is simply connected, G/G ° is the universal covering space of all of the G~ Gie 
and any covering space of G/Gp is diffeomorphic to a G/Gip. 

7. Fibre bundles arising from homogeneous nondegenerate 1-systems 

Let P be a subset of  G* containing some nonzero element. 

P is said to be regular if N o is closed and Gp 56 Np.  Otherwise P is said to be singular. 
P is said to be algebraically singular when Gp = N e. When N ° is not closed, then we 
say that P is topologically singular. Note that, if P is algebraically singular, then we have 
N o = G ° ,  so that P cannot be topologically singular. If P is regular and _Gp # G, then we 
say that P is completely regular. 

The adjectives regular, topologically singular, algebraically singular or completely reg- 

ular are also applied to elements (P,  N j )  of Ko(G) or (P,  G/p, C) of  K6(G) when P 
is regular, etc. A multihamiltonian space (resp. homogeneous nondegenerate 1-system) is 

said to be regular, etc. if it is equivalent to one of the forms (G/Gie, {(I2~ (or), Lie (~r)): cr E 

P}, G) (resp. IG/N j ,  P J, GI) where P is regular, etc. The adjectives are also applied to 
the equivalence classes of these objects. 

Lemma 7.1. Let P E G* be such that P 56 {0}. Then 
(a) P is regular if and only if Hom ° contains some nontrivial homomorphism. 
(b) P is algebraically singular if and only if Hom ° =- {r}, where r is the trivial onto 

homomorphism (from G ° onto {e}). 
(c) P is topologically singular if and only if Hom ° is empty. 

= Fi(O) H o m O ( G ° / N  0) and C~ O) Proof Let P be regular. We have G~ °) G ° .  Thus ~ p  
is not trivial. 
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Conversely, let C ~ Hom ° (A) be nontrivial. Thus N ° is closed and dim(Gp/Np) = 
dim(A) ~ O. Hence cr is regular. 

The proof of  (b) and (c) is left to the reader. [] 

Let (P,  G~o, C) E K~(G), NJp = KerC, where P is completely regular. Thus i = i ( j )  
(cf. Lemma 5.9). 

We know that G/NJ(G/Gip ,  Gip/N j )  is a principal fibre bundle with the canonical 

map, Pji, from G / N  j onto G/Gip as bundle projection. 

We have two actions on G / N  j .  Firstly, the canonical action on the left of  G on G/NJ:  g. 

(h Nip) = (gh) N j . On the other hand, we have the action on the right of  the structural group, 

Gip/N j ,  on G / N  j" ( g N J ) .  (hNJe) = (hg)N j for all g E G~o, h 6 G. This action on the 

right will be referred to as bundle action. 
The Lie algebra of  Gip/N j will be identified in the canonical way with G__p/N_p. 

L e m m a  7.2. The infinitesimal generator of the bundle action associated with Y + N p ,  Y E 

Gp is Zip(y) .  

Proof The value at hN j of the infinitesimal generator associated with Y + _Np, since the 

action is on the right, is the tangent vector to 

Expt(Y  + N_e). (hN j )  = h Exp t Y N  j = p j .  RExptr(h). 

But the tangent vector to this curve is pj.  (Yh) = ( z j  (Y)) (Pj (h) ). [] 

R e m a r k  7.3. The canonical action and the bundle action commute each other. Therefore, 

vector fields Z j (Y) remain invariant under the canonical action and the infinitesimal the 

generators of  the canonical action remain invariant under the bundle action. 

Let us denote by X~ the infinitesimal generator of  the canonical action associated with 

X c G. Let ~o be the diffeomorphism of G/Nip associated, by the bundle action, with 

We have tp o pj = pj o Rg, so that 

= Rg(pjOgp(ff)) . . . .  

We have thus proved the following lemma. 

Lemtna  7.4. o9 j (or) is invariant for the bundle action for all cr E P. 

Let P be the subset of  (_Gp)* composed of  the restrictions to _Gp of  the elements of  P and 
let (P) be the subspace of  (_Gp)* generated by P .  The dimension of  (P) will be denoted 
by r (P)  and we have r (P)  = dim G_p-dim N_p. Also r (P)  is the cardinal of  each maximal 
linearly independent subset of  P .  

Let _G~p be the set consisting of  cr ~ G* such that tr = 0, where a q_ means the restriction 
of  cr to _Gp. 
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We denote by S(P) the set consisting of r (P ) -d imens iona l  subspaces of  G* such that 

S A P contains a basis of  S and S A G~ = {0}. 

The elements of S(P) can be obtained as follows. Let O-1 . . . . .  O-riP) c P be such that 

{o-I . . . . .  O-r(e)} is a maximal linearly independent subset of  P .  Then the subspace of  G* 

spanned by {o-l . . . . .  O-r}, (O-1 . . . . .  o ' r ) ,  is an element of S(P). 
Let S c S(P) and let O- 1 . . . . .  O-r(P) c P be a basis of S. We define an isomorphism, qs, 

from S onto (Gp/Np)* by means of  (qs(o-))(X + N p )  = O-(X) for all O- c S, X c Gp. On 

the other hand, we know that for all O- 6 S there exists a unique oJ j (o-) c I 2 1 ( G / N  j )  such 
* J * i that O- = p) (Wp(o-)) and a unique S-2~,(o-) 6 ,Q2(G/G%) such that Pi . (2p(o-)  = d~r. Thus 

we have the following lemma. 

L e m m a  7.5. Let g c G, v ~ T NJ e (G/N  J). Thus there exists a unique element of  Gp / Np, 

which we shall denote by ~o g (S) gNJ p (v) such that 

qs(o-  ) ( s )  gN; . (v)  ) = (o- ) g 

for all O- ~ S. 

Proof Since a__ t . . . . .  ~_r(P) are linearly independent, there exist Yl . . . . .  Yr(P) C G__p such 

that O-k(yi) = 6 7 for all i, k = l . . . . .  r(P). Thus {qs(o-k)} is the dual basis of {yk + Np}. 

If ff~¢ (S)gNJ e (v) exists, we must have 

r(P) 

wJ (S)gN; . (v) = E ( o g J  (ak)gN; " (V))(yk + N_p), 
k = l  

which proves uniqueness. To prove existence, it suffices to d e f i n e  ~OJp(S)gNJo(I) ) by the 

above relation. [] 

This lemma enables us to consider the differential 1-form ff)J (S), on G / N  j whose value 

at gN j sends v E T Nip(G/NJ) to ffJJ (S)gNJ P (V). 

With the usual identifications and the notation of  the proof  of  Lemma 7.5 we can write 

r(P) 
&J (s) = E wJP(o-k)®(Yk + Np). 

k = l  

As a consequence of Lemmas 7.4, 7.2 and 5.2, we see that this form is a connection form 
on G/NJ(G/Gip ,  Gip/NJ). 

Since the structural group is abe l ian ,  the curvature form is the differential of  the con- 

nection and will be identified to its projection on the base space. Thus the curvature form 

is given by 

r(P) 
"(2ip(S) = E j2ip(o-k) ® (Yk + Np). 

k = l  
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In fact, for all k = 1 . . . . .  r(P),  we have 

p;(p;i$-dip(ryk)) * i k Pi $'2p(O" ) = dcr k ---- p;d(wJo(o'k)) 

SO that p*j$2ip(a k) = d(wJ(ak)) .  

Proposition 7.6. Let S, S' ~ S( P). Then there exists on G/ G% an invariant 1-form with 
values in Gp/Np,  or,such that 

f f )J(s ' )=f f )J(S)+p;ict ,  ~'2~ (S') ----- $'2~ (S) + dot. 

~ . 

In particular, the class of 12re (S) in the invariant cohomology with values in G p/Np 
does not depend on the choice of S in S(P). 

Proof The 1-form (5 j (S') - ff~J (S) vanishes on vertical vectors and is invariant by the 

bundle action. Thus it projects to a unique 1-form, ct, on G/G%. Since t3J ( s  ') - & ; ( S )  is 

G-invariant and Pji is G-equivariant, uniqueness of  ot implies that ot is G-invariant. 

The relation ~ ,  (S') - ~ o  (S) = da  follows from the fact that the left-hand side is the 

projection of  d(cb j (S') - &J (S)). [] 

Until now, we have used the existence of  C but not C itself. Since each connected abelian 

Lie group is isomorphic to the product of  a toms by a euclidean space, we can assume that 
C(Gip) = TP x Rq, p + q = r(P).  Thus C gives us an isomorphism from Gip/N; onto 

T p × R q, which enables us to identify these groups.  In the following the preceding fibre 

bundle is considered to have T p × ~q as structural group. The Lie algebra of  T p x ~q is 

identified to [~r(P), in such a way that the exponential map becomes 

Exp(a I . . . . .  a p, b I . . . . .  b q) = (e 2rriaj . . . . .  e 2zriap ' b 1 . . . . .  bq). 

Theorem 7.7. Let P be completely regular, i E I ( P ) ,  C E Homip(T p x Rr(P) -P) ,  NJp = 
KerC, S ~ S(P). Then there exist uniquely defined 01 . . . . .  T] r(P) E S such that dC = 
(_01 . . . . .  _or(P)). The connection form is given by cbJ(S) = (09;(01) . . . . .  o)J (rlr(P))) and 

the curvature form by ~ ( S )  --- (S'2~o (01) . . . . .  I2ip (qr( P)) ). 

Proof t(dC) gives us an isomorphism from (~r(P))* o n t o  (__P). The map defined by sending 

each element of  S to its restriction to _Gp is an isomorphism from S onto (P). We denote 

by f ~he composite map of  the former isomorphism with the inverse of  the latter one. To 
prove existence it suffices to define 0 i = f*e  i, i = 1 . . . . .  r (P ) ,  where {e i } is the dual 

basis of  the canonical one. Unicity follows from the definition of  S(P). [] 

Let cr 6 (P). Since the restriction of  cr to G ° is closed, it defines an element, [a],  of  
Hl(G ° ,  N). The image of  HI(G ° ,  7/) under the canonical map into H I ( G  ° ,  R) will be 
denoted also by H 1 (G ° ,  Z). We have [or] ~ H 1 (G ° ,  Z) if and only if f× cr is an integer 
for all finite singular 1-cycles with integer coefficients. 
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Since G ° is a connected Lie group, sri (G ° )  is abelian so that srl (G ° )  is canonically 

isomorphic to Hi (G ° ,  ~). Both groups are finitely generated. 

In order to prove that [cr] E H I ( G ° ,  71) it suffices to prove that f×i c~ E Y, where 

the /i are piecewise differentiable representatives of  a set of  generators of  Srl (GO). Let 
[or] 6 H l (G ° ,  22). By means of  the canonical isomorphism from H o m ( n l  (GO), 7/) into 

H i (G ° ,  Y), [or] can be considered as the element of  Hom(zq  (GO), 7/) defined by sending 

the homotopy class of V to fy or. 

Let 0 1 . . . . .  0 r(e) be as in Theorem 7.7. Thus [0 k] E H I ( G  ° ,  7/), i fk  ----- 1 . . . . .  p, and 

[77 k] = 0, for k = p + 1 . . . . .  r (P) .  In fact, as we have seen in the proof of Theorem 7.7, the 

restrictions of 0 i . . . . .  O r(p) to G e are the pullback by C of the basis dual of  the canonical 

basis of  the Lie algebra of  T p × ~r(P)-p .  The proof follows from the fact that each of  the first 

p elements of  the dual basis has integral 1 on one of  the fundamental cycles of  T p × ~rIP)-p  

and 0 on the others, whilst the last r ( P )  - p elements have integral 0 on all the cycles. 

Conversely, given a completely regular P, let us assume that there exist p < r ( P )  and 
01 . . . . .  O r(P) ~ (P) such that [O k] ~ H I ( G  ° ,  ~)  - {0}, k = 1, 2 . . . . .  p, [O k] = 0, k = 

p + 1 . . . . .  r ( P ) .  

Thus we define He c Hom°e(T p x ~r(P)-p) by sending each g E G ° to 

H e ( g )  = ~e ~r . . . . .  e , O p+i . . . . .  O r(p) , 

/ / 

where F is a piecewise differentiable curve in G ° such that F (0) = e, F (1) = g. Of course, 
one can give homomorphisms onto other products T s × E r ( t ' ) - s  s >_ p, changing some 

of  the last R ( P )  - p entries by suitable exponentials. 

We see in this way the relation between the search for the nonempty H om ie (T  p × 

~r(P)-p) ,  and the one for basis of  (P) composed of elements with integral cohomology 

class. This relation will be explained with much more detail in the particular case in which 

P is composed of  a single element. This will be accomplished in Section 8. 

The preceding considerations applies to the HNDPS in an obvious way: to each com- 

pletely regular homogeneous nondegenerate 1-system one associates a multihamiltonian 

space in such a way that one obtains a principal fibre bundle with abelian structural group. 

Some of  the subspaces generated by elements of  the 1-system define connections in the 

principal fibre bundle and the corresponding curvatures are given by linear combinations 

of  elements of  the 2-system. 
The multihamiltonian spaces associated to equivalent 1-systems are equivalent. Thus we 

obtain a map from equivalence classes of completely regular homogeneous nondegenerate 
1-systems to equivalence classes of  completely regular multihamiltonian spaces. This map 

is not surjective since the multihamiltonian spaces which appear as base spaces of the 

preceding fibrations are not arbitrary. In fact, we have the following proposition. 

Proposition 7.8. Let O k be as in Theorem 7.7, k = 1,2 . . . . .  r( P). The cohomology class 
i k o f  I2 p(  O ) is integral. For k = p + 1 . . . . .  r( P)  this cohomology class is O. 
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8. Homogeneous contact manifolds 

In this section we consider HNDPS consisting of a single 1-form. As we have seen, its 
equivalence classes compose a set which is in a one to one correspondence with the subset 
of  Kt(G) composed by the I P,  G%, C I such that P consists of  a single element. This subset 

will be denoted by C'(G). 
Let P be a subset of  G* consisting of a single element, a .  Under these circumstances we 

use the same notation as in the preceding sections but replacing P by cr. In the case where 
this leads to the use of  two ~r such as in w j (a )  or I2 / (or) one of the cr is suppressed, thus 

using w~ or ~ / ,  respectively. 

Let us denote by C r' (G) (resp. Cas(G)) the subset of  C'(G) composed of kr, G/a, C I such 
that ~r is regular (resp. algebraically singular). Obviously, the condition is independent of  

the representative. C'(G) is the union of Cr ~ (G) and Cas (G)- 
We denote by Cont(G) (resp. Esy(G)) the set composed of the equivalence classes (in the 

sense of  the HNDPS) of homogeneous contact manifolds (resp. homogeneous exact sym- 
plectic spaces). Because of Lemma 3.3, the set of  equivalence classes of  HNDPS composed 
of a single 1-form is Cont(G) U Esy(G). 

Proposition 8.1. The map defined by sending I~r, G i ,  C[ to I G / N  j ,  o9 j ,  G J, where N j -- 
Ker C, maps bijectively Cr(G ) onto Cont(G) and Cas(G) onto Esy(G). 

Proof It suffices to prove that no element of  the image of Cr ~ (G) (resp. Clas (G)) is in Esv(G) 
(resp. Cont(G)). 

If a is regular, dimG__~ = dimN_~ r + 1 and d i m G -  dimGG_~ is even. Thus dim(G/N j )  is 

odd, so that dw j cannot be symplectic. 
If  a is algebraically singular, dim(G/N ) )  is even so that w ) cannot be a contact form.[] 

As a consequence of Lemma 7.1 we have the following lemma. 

Lemma 8.2. An element, a, of G* is regular if and only if there exists a homomor- 
phism from G O onto S 1 whose differential is the restriction of a to ~ up to a constant 
factor. 

Let ~r be regular. For all j 6 J ( a ) ,  Z(w j )  (see Example 3.2) is invariant by the action. 
Since this action is transitive, the group of periods of  all its integral curves is the same, and 
will be denoted in what follows by Pa J. This group coincides with {t 6 0~: Exp tY  c N J}, 

where Y 6 G_~ is such that cr(Y) = 1. Its nonnegative generator (i.e. the period) will be 

denoted in what follows by T(wJ).  
Let la, G i ,  CI ~ Cr(G). Thus C(G i )  is isomorphic to ~ or to S 1 and we can assume 

without loss of  generality that one of the following conditions holds: 
(i) C is a homomorphism from G / onto R such that dC is the restriction of a to G*. 

(ii) C is a homomorphism from G / onto E1 such that dC is, up to a positive factor, the 
restriction of a to G*. 
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In fact, there is a representative of  the equivalence class, whose homomorphism is in one 

of  the preceding cases. 

The subset of H o m  i (R) (resp. H o m  i (S 1)) consisting of the homomorphisms from G~r 

onto R (resp. S l ) such that dC is the restriction of  cr to G* is denoted in the following by 
Horn i (~) (resp. Horn i (~1)). 

Thus in order to obtain all homogeneous contact manifolds, up to equivalence and up 

to a multiplicative positive constant in the contact form, for a given Lie group, G, one can 

proceed as follows: 

(i) Take a representative of  each coadjoint orbit. 

(ii) For each representative, a ,  determine the corresponding isotropy subgroup Ga and 

the G / ,  i E l(cr). 
Off) For each i, determine the sets H o m i ( S  l) and H o m i ( R ) .  

The a that gives rise to homogeneous contact manifold,  i.e. the crsuch that Hom i (~) or 

H om i (~1) are non empty for some i E I ( a ) ,  will be called ~-quantizable or quantizable, 

respectively. Of course, if cr is ~-quantizable, it is quantizable. The search for quantizable 

forms, can be made much easier by developing the methods initiated at the end of  Section 7, 

as follows. 

Let cr ~ G* be such that [cr]E H l ( G  °,  7/). Thus, we denote by Na the set consisting 

of the g E G O such that there exists a curve, y,  in G o such that y(0) -- e, y(1) = g 

and f× cr 6 2L I f g  E No a n d y '  is a curve such that y ' (0)  = e, y ' (1)  = g, we also have 

f×, ~r c 27. Since ~rlN o = 0 and N ° is connected, N ° C No. 

Let Ca be the map from G O to S l defined by sending g c G o to 

2~ri( a 

C~r(g) - =  e ~y , 

where y is a piecewise differentiable curve in G O such that y(0)  = e, y(1)  = g. See the 

definition of  He in Section 7. 

L e m m a  8.3. C~ is a homomorphism whose kernel is Na and dCc~ : ~r. 

Proof  Letg ,  g '  E G ° , a n d  y, y '  curves such that y(0)  = y ' (0)  = e ,y (1 )  = g , ) / ( l )  = g' .  

Let y • g y '  the "product" (in the homotopy theory sense) of the curve y by the curve, gY',  

given by (gy ' ) ( t )  = g. (y ' ( t ) ) .  Hence ( y . g y ' ) ( 0 )  = y(0) = e, ( v . g ) / ) ( 1 )  : (gy ' ) (1)  = 

gg' and 

f 
v*gY' Y gY' Y Y' 

since Lgcr --= a .  It follows that Ca(gg')  = Ccr(g)Ca(g'). 

The relation Ker Ca = Na is obvious. 
For all X ~ G_G~, we can consider the curve y( t )  = E x p t X ,  t ~ [0, 1], thus obtaining 

Ca (Exp X) = e 2zrkr(x). As a consequence, Ca is differentiable and dC~r = ~. 
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In particular, Nc, is closed and N ° is its connected component of  the identity. Thus N O 

is also closed. [] 

As a consequence, if [e] 6 H l (G °,  7/), e is not topologically singular. If moreover 

[el  ~ 0, e is regular. 

Now let us assume that [e] = 0. Thus we denote by C~ the map from G O into R, defined 

by sending g 6 G O to 

= f e, C1(g) 
I I  

F 

where F is a curve in G O such that F(0) = e, F(1) = g. See the definition of  Hp in 

Section 7. 

Lemma 8.4. C~ is a hornomorphism whose kernel is N O and dC~ = if_. 

Proof We see, as in the proof of  Lemma 8.3., that C~ is a homomorphism and C~ (Exp tX) = 
ta (X) for all t E ~, X 6 G_G,. It follows that C~ is a Lie group homomorphism and that 

dC~ = a_q_. In particular N O C Ker C~. 
If  a is algebraically singular Ker C~ C G O = N O and the proof is complete. 

Now let us assume that e is not algebraically singular. Thus, there exists Y ~ G_~ such 

that a(Y)  = 1. Because of  Lemma 5.8, for all h 6 G °,  there exists t 6 •, n c N °,  such 

that h --- (ExptY)n. Thus t = C~(h). In particular, i f h  6KerC~ we have t = 0 so that 

h e N  °. [] 

We quote here for future reference the following lemma. 

L e m m a 8 . 5 .  L e t [ e l  6 Hi(G°,77),g E Ga,go ~ G O • Thus gol g-lgog E N O . 

Proof Let y be a curve in G O such that F(0) = e and F(1) = go. Since L* Rge  = e ,  g-I 
we have 

f g-I ~ e 

F F g-lFg 

so that Ca(go) = Ca(g-lgog). Hence we have golg- igog E Na. Thus gol g-lgog can 
be joined to e by a curve contained in Na. Hence golg-lgog ~ N °. [] 

Corollary 8.6. If [e] 6 H I(G °, •), then N ° and Na are invariant subgroups of Ga. 

Let [el  ~ H l (G ° ,  7/), i 6 I ( e ) .  Let p i  (resp. p~) be the canonical map from Gia/Na 
(resp. G i / N  °) onto G / / G o . We denote by S / (resp. R / ) the set composed of  the subgroups, 
N, o f G i / N a  (resp. Ga/N~)i o such that p i  IN (resp. P~lu)  is bijective, i.e. an isomorphism. 

Notice that S / (resp. R~) is bijective to the set composed of  those sections of p~ (resp. 
p j )  which are homomorphisms. 
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T h e o r e m  8.7. Let ~r be regular. The following conditions are equivalent: (1) [or] 

Hl(G °, 7/); (2) T(co °)  6 2~; (3) Hom°(S  l) ~ 0. lfthese conditions hold, Hom~(Sll 
is bijective to S i and, if non-empty, to Horn ( Gia / G 0, S l), for all i E I (or). 

Proof Since or is regular, there exists Y ~ G~r such that a ( Y )  = 1. If [~r] 6 HI(G~, Y), 
we have Ca (Exp t Y) = e 2rr it and Exp T (coo) y ~ N ° C Na. Thus T (coo) ~ Z. 

Now, let us assume that T(w °) c 7/. Given go c G o , let t c N, n 6 N ° be such that 

go = (Exp t Y)n. The real number t is well defined modulo T (co °) ,  by go. The map defined 

by sending go to e 2~rit is well defined and an element of  Hom o (S 1 ). 

Now let i c l(~r), C c Hom°(St) .  Let /z be the left invariant l - form on S l such 

tha t /z(1)  = 1. C*/z is a left invariant 1-form on G o such that C*#(Z)  = # ( d C ( Z ) )  = 

U(cr(Z)) = or(Z) for all Z c G__~. Thus C*#  = cr and, since [#] ~ H I ( s I ,  7/) , it follows 

that [or] 6 H I(G °, 7/). This finishes the proof  of  the equivalence of  the three conditions. 

Now let us assume that the conditions hold. We shall define a one to one map from S / 
onto Horn i (S 1 ). 

Let N E S/ .  We define a map, fN, from G / onto G°/No  by means of  .IN(g) = 
g( (p i  iN)- l (g- lGO)) .  The map fN is an onto homomorphism. 

On the other hand Ca gives us an isomorphism, C~, from G°/No onto S l (since cr 

is not algebraically singular and dCa = ~r, Ca is surjective). Let us denote by CN the 

composite map C~ o fN. Since the restriction of CN to G o is Co, we have dCN = ~.  Thus 

C N c Homia(sl). 

We shall prove that the map, ~o/, from S / into H o m i ( S  l) defined by ¢pi(N) = CN is 

bijective. We shall explicit ly give its inverse. 

Let C ~ Homi(S i ) .  We have CIG o = Ca so that N,~ = 0 GoA KerC. 
0 We have KerC/No E S i .  In fact, for all g E G / ,  there exists go c G a, n ~ KerC, such 

that g = ngo. Thus gG ° = nG ° ---- p i (nNa) .  This proves that ( p / [ H )  is an onto map, 

where we have denoted KerC/No by H.  On the other hand, if n, n' EKerC are such that 

n G O = n ' G  ° ,  then we have n - '  n' E G o A Ker C = No. This proves that pitH is injective. 

The map defined by sending C E Hom~(S I) to KerC/No c S i ,  is the inverse of~0/. 

To end the proof, notice that Hom (G i / G o , S l ) acts freely and transitively on Horn i (S l), 

if this set is nonempty. The action is given by C. F(g) = C(g)F(gG °) for all F ~_-- 
) i H o m i ( S  I) and c i H ~ m ( G o / G ° , S 1 ) , C  c g G a. El 

1 o Coro l l a ry  8.8. Let ~ be regular. Thus there exists A ~ N-{O} such that A[~ ] E H (G o, 2~). 

Proof I f o  is regular, there exists A E N -- {0} such that Hom°a(S l) ~ ~ (cf. Lemma 

8.2). Thus [A~r] ~ HI(G O, ~_). E~ 

As a consequence of  this result and the remark following the proof of Lemma 8,3. we 

have the following corollary. 

C o r o l l a r y  8.9. Let us assume that cr is not algebraically singular, cr is regular if and only 
if[A~r] E Hl(G°,77)forsome A E ~ -  {0}. 
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Theorem 8.10. Let tr be regular. The following conditions are equivalent: (1) [a] = 0; 
(2) T(~o °)  = 0; (3) Hom°(A) ~ 13. If  these conditions hold, nomi (R) is bijective to R i 
and, if nonempty, to H o m ( G i  / G O, ~) for all i E I (tr). 

The proof of  this theorem is similar to that of  Theorem 8.7, and is left to the reader. 

As a consequence, i f a  is regular and [a] is integral but not zero, Hom~ (R) is empty for 

all i. 

Notice that, if G is simply connected i 0 G o / G  o is isomorphic to the fundamental 

group of  the Hamiltonian space G / G  i ,  so that H o m ( G i / G  °, H) is isomorphic to 

Hom(zrl (G / G i  ), H). 
Let tr be regular and [or] = 0. Let s be a section of  the canonical map from G / onto 

i 0 g ~ i 0 G o / G  o. For all K, 6 G~/G o, there exists a uniquely defined ~(K, K I) 6 R such that 

s (K) .  s(K')  = s (K .  K')(Exp ~(K, K')Y)n,  where n E N O and Y 6 G such that tr (Y) = 1. 
2 i 0 We thus obtain a 2-cochain, ~ c C (G,r / G~, ~), which by direct calculation is proved to be 

a 2-cocycle. The corresponding cohomology class, [7] E H 2 (G / / G  °,  ~) is independent 

of  the section we have chosen and will be denoted by t / .  If we identify G o / N  ~ °  0 with S 1 

i is the cohomology class corresponding to the extension of  G / / G  O by by means of  C ' ,  t o 
i 0 O./N~. 
We shall also denote by H 2 ( G i / G  °, 72) the image of  the natural homomorphism of 

H2(Gi  / G  °, 7?) into H2(Gi  / G  °, ~). 

Proposi t ion 8,11. Let cr be regular and [or] = 0. We have Hom i (S 1) ¢ ~ (resp. H omia (R) 
2 i 0 i = 0 ) .  # 13) i fandonly i f t  i ~ H (Go/G o, 7?) (resp. t o 

Proof Let N c 5 / (resp. N E R/ )  and let us c h o o s e a s e c t i o n s  in such a way that 
i 0 g I i 0 s (K)No E N (resp. s ( K ) N  ° E N) forall K E Go/Go.  Thus, forallK, E Go~Go,we 

have (Exp-g(K, KI)Y)n = s ( K . K t ) - l s ( K ) s ( K  t) E No (resp. No), since N is a subgroup 
of Gi  /No (resp. Go/Na).i 0 

On the other hand C~ (Exp tY)n) = t. Thus ~(K, K ' )  6 7? (resp. ~(K, K ' )  = 0). 

Conversely, let t i ~ H2(G O, 7?)(resp. t / = 0). Let s be a section such that ~(K, K ' )  
i 0 i 7? (resp. s = 6H, where H E CI(Gia/G °, ~)). Thus {s(K)No: K ~ G~r/Go} c S~ (resp. 

i 0 R~). [] {s (K) (Exp-H(K)Y)NO:  K E Go~Go} 

As a consequence, if H 2 ( G i / G ° , ~ )  = 0, then H o m i ( R )  • 0. If the subset 
H2(Gi /GO,7?)o f  2 i o Homi (S l )_~  7~13" H (Go/G o, ~) vanishes and 13, then Homi (R )  

Corol lary  8.12. I f  G i has a finite number of components, then H om i (~ ) consists of exactly 
one element. 

Proof. Let m be the order of  i 0 G~/G o. Multiplication by m in ~ is an isomorphism, thus 
giving an isomorphism in cohomology. But multiplication by m is the zero homomorphism 
in cohomology (cf. [5, 16.5, p.227]). Thus n i 0 H (Go/G o ,~ )  = 0 for a l l n  >_ 1. Thus 
Horn i (•) is nonempty so that it is bijective to H o m ( G i / G  °, ~). But H o m ( G o / G  o , i  o I~) 
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consists only of the identity element. [] 

Also in the general case in which tr is regular and [tr] c H l (G ° ,  7/) we have cohomo- 

logical methods to know the cardinality of  the sets H o m  i (S l). 

In this case, we can consider the action of  i 0 S l G o / G ~  on by automorphisms (i.e. S t 

becomes a ( G i  /G° ) -modu le )  given by gG ° * C~(go) = C~(ggog -1) and the cochain 
i 0 2 defined by sending a pair (k, k') ~ (Gc~/G~) to C~(s(k)s (k ' ) s (k ,  k')-l), where s is a 

i 0 section of  the canonical map of G / onto G~,/G~. This cochain is in fact a cocycle and its 

i H 2 (G / / G  O , S l),  does not depend on the section s. If  we identify cohomology class, r~ c 

i is the cohomology class corresponding to the extension G ° / N o  with S l by means o fC~,  r~ 
of i o G i  / N~. We have G~r/G~r by the following proposition. 

• i __ O. When this is the case, Propos i t ion  8.13. Hom~ (S l) is nonempty i f  and only if  r~ 
H om i (S l) is bijective with the set composed by the 1-cocycles, Z 1 ( G c~ / G~r 0 S 1 ). 

Let [tr] c H1 (G 0, 77). The image of [cr], [cr](Hl (G 0, 77)), is a subgroup of  7/ whose 

nonnegative generator is the highest common factor of the subgroup if [~r] -~ 0 and 0 if 

[~r ] = 0. If [~r ] ~ 0, it is also the highest common factor of the f×~ or, where Vi, i = 1 . . . . .  N, 

are piecewise differentiable curves whose homotopy classes generate rri (G o , e). 

P ropos i t ion  8.14. Let cr be regular and [tr] E H 1 (G o ' 77). Thus the nonnegative generator 

o([cr](H1 (G ° ,  77)) is T(og°), i.e. [cr](H1 (G ° ,  77)) = po. 

Proof  If [cr] = 0, we know from the preceding theorem that T(o9 ° )  = 0. 

If [or] ~ 0, we have H o m  o (~)  = 13. Thus G O / N  o must be isomorphic to S l . Let f be an 

isomorphism from 0 0 G ~ / N ~  onto S 1 . Thus d ( f  o C °)  -~ A~_ for some A 6 ~ - {0}. We can 

choose f s o t h a t A  6 E+. We thus have A = 1 / T ( c o ° ) , s o t h a t f o C  ° ~ H o m  o o (S l ) .  
-cs/T (oo~) 

In particular, [ a / T  (o) °)]  6 H i (G o , 7/), so that T (co °)  is a common factor of  the f× cr for 

all piecewise differentiable curves in G o starting and ending at e. 

Let us denote by Yi the curve Vl(t) = E x p t T ( w ° ) Y ,  t ~ [0, 1], where Y E G_~ is such 

that a (Y)  = 1. Let ?'2 be a curve in N ° starting at Exp T(Og°)Y and ending at e. Thus the 

integral of~r on V1 * 7' is T(og°o), so that T(w °)  is the highest common factor of the fv or.[] 

Corollary 8.15. Let [tr] ~ H I ( G  0, 77) - {0}. Thus N /T~w] ) = N2. 

0 Proof  Let Y E ~ be such that or(Y) = 1. Thus N~ = { (Exp tY )n : t  c 7/,n c N~}. 

Since [a/T(o9°)]  6 HI(G° ,77)  we can consider N,/.r~oo) and we have N~,/Tl~oo ~ = 

{ (Exp tT(og°)y )n: t  ~ 77, n E N 0} = U O. [] 

As a consequence of  these results, one can proceed as follows in order to know which 

1 -forms are quantizable. After steps (i) and (ii) have been completed, one can look for a set 

of generators of rrl (G °)  and evaluate the integral of  c~ along all of them. Then: 

(i) If these integrals are all zero, a and all of  its proportionals are ~-quantizable and, as 
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a consequence, quantizable. The concrete i E I ( a )  for which the homomorphisms 

exist, can be determined by means of  R / or t / . 

(ii) If  there exists a )~ 6 R whose product by the integrals are integral numbers, not all zero, 

let us denote by T the greatest common factor of  these integers. Thus all the k~ .a /T ,  

k E 77, are quantizable but not R-quantizable. The concrete i ~ I ( a )  for which the 

homomorphisms exist, can be determined by means of  S / or r / . 

(iii) If  no such a ~. exists, then no 1-form proportional to a is quantizable. 

Once the quantizable forms are known, one can determine C,~ and C~ (when it exists) 

and then, complete step (iii). 
The HCM, like all HNDPS (cf. Section 7), gives rise to principal fibre bundles with 

connection. We now describe briefly the situation in this particular case. More details are 

given in [4]. 
Let a be regular, G :~ ~ ,  i c l (a) and C ~ H o m i  (S t) . 

We can define an action ofS  l on G/Ker  C by means of  (g Ker C) *s = gh Ker C, where h 

is an element of  G / such that C (h) = s. Actually (G /Ker  C) ( G / G  / , S l ) is a principal fibre 

bundle, the bundle action being the preceding one and the bundle projection, the canonical 

map. 

Let Z(co) be the vector field defined by 

iz(o~)W = 1, iz(o~)dco = O, 

where co is the contact form defined on G/Ker  C by a .  If  we denote by T(co) the period of  

any integral curve of  Z(co), then we have ~. = 1/T(co). Thus co/T(co) is a connection form. 

Since the structural group is abelian, the curvature form is dco/T(w).  There exists a unique 

2-form on G / G  i ,  whose pullback under the bundle map is the curvature form. This form 

itself will also be called curvature form. Its reciprocal image under the canonical map of  

G onto G / G  i is da/T(co) .  This form is symplectic and its cohomology class is integral. 

The manifolds G / G  i provided with these symplectic structures are the Hamiltonian spaces 

(cf. [7]) of  the group G. 

If  C E Hom~ (~) we have similar results but the structural group is R and the connection 

form is, simply, the projection of  a .  

In any case, the manifold G/Ker  C is the quotient of  G / N  ° by a properly discontinuous 

free action of  Ker C / N  °. The following lemmas give us information regarding this group 

and the action. For each quantizable form, we consider all of its proportionals which are 
quantizable. 

Lemma 8.16. Let a be regular, T (w O) ~ 7 / -  {0} and C c H omiko / r (o~o) (S l), k E 7 / -  {0}. 
. e ' ~ /  i T D  i 0 Thus we have an exact sequence 1 ~ ~_/k2e ~ Kert~/~v#r ~ G a / G  ~ 1. 

Proof  Let Y 6 G_G_a be such that a (Y)  = 1. Since C ( ( E x p t Y ) n )  = e 27ritk/T(w°o) for all 

t E ~, n E N °,  we see that G O n K e r C  = { ( E x p ( z T ( w ° ) / k ) Y ) n :  z c 7/, n E NO]. 

The map, f ,  defined by sending z + kZ to (exp(zT(co°)/k)r)N ° ~ K e r C / N  ° is a well 
0 0 defined injective homomorphism whose image is ((Ker C) ~ G o ) /N~ .  Thus the sequence 
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1 --+ Y/k77 f K e r C / N  ° p K e r C / ( G  ° n K e r C )  --+ 1, where p is the canonical map, 

i (cf. the proof of  Theorem 8.7) so that it is is exact. But k e r C / ( G  ° N K e r C )  ~ Sko/r(o~o ) 
i 0 isomorphic to Go~ G o . [] 

L e m m a 8 . 1 7 .  Let a be regular, T (w  O) = 0 and C E H o r n i ( H ) ,  where H = ~ or 

H : S 1. I f H  = ~ , K e r C / N  0 ~-- G i / G  O , / f H  = S 1, we have an exact sequence 1 
i 0 7 / ~  K e r C / N  0 ~ G o / G  o ~ 1. 

Proof  Let A 6 • -  {0} be such that C ~ H o m ~ o ( H ) .  I f H  = ~, we have C / A  E 
H o m i  (R). Thus ( K e r C ) / N  ° = ( K e r ( C / A ) ) / N  ° ~ R i and the result follows. If H = 

S 1, we have C ( ( E x p t Y ) n )  = e 2zr ia t ,  for all t c E, n E N °. Thus G O A K e r C  = 

{ (Exp(z /A)Y)n  : z c 77, n ~ NO}. The remainder of  the proof is similar to that of 

Lemma 8.1 6. [] 

Proposition 8.18. Let cr be regular and T (w  O) E 77 - {0}. Then G / N o  is the quotient o f  

G / N  O by the properly discontinuous free action o f  the group of  T (w 0 )-roots o f  I given by 

the bundle S 1-action. 

Proof  The diffeomorphism of G / N  ° associated by the action to g N  ° ~ N o / N  ° is the 

diffeomorphism associated by the bundle action to g N  ° considered as an element of  G O/N  ° 

i.e. the diffeomorphism associated by the bundle action to Co~ r (~o°)(g) c S 1 (cf. Corollary 

8.15). Since No = { (ExptY)n  " t c Z, n ~ No}, we have Co/rlo~o)(No) = {e 2zrit/T(°~°) " 

t ~ 77}. [] 

In a similar way we have the following proposition. 

Proposition 8.19. Let cr be regular and T (w °)  = O. Then G / N o  is the quotient o f  G / N ° 

by the properly discontinuous free action o f  71 given by the bundle Z-action. 

9. An example: Quantizable forms for relativistic particles 

It is a generally accepted fact that relativistic free particles correspond, via Geometric 

Quantization, to quantizable forms of  the universal covering group of Poincar6 Group. In 

this section we apply the preceding methods to this particular case. 

The universal covering group of  Poincar6 group is the semidirect product SL(2, C) 

It(2),  with group law given by (A, H) • (B, K) = (AB,  A K A *  + H).  

The Lie algebra of  SL @ H(2) is identified to sl x H(2), the Lie bracket being 

[(a, k), (a ' ,  k')] = ([a, a ' ] ,  ak'  + k'a* - (a'k + ka1*)). 

The adjoint representation thus becomes 

Ad(A, H)(a, k) = (AaA  -1, AkA* - ( A a A - 1 ) H  - H ( A a A - I ) * ) .  
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Table 1 
Types of coadjoint orbits 

Type I P I [ W l P W Det a 

I 0 0 0 0 
2 0 0 0 0 
3 0 <0 S0  S0  
4 0 0 S0  
5 >0 50  4:0 
6 <0 0 SO 0 
7 <0 >0 -~0 5~0 
8 < 0  < 0  S O  :~0 
9 <0 0 -%0 -~0 

0 
S0  

We define a nondegenerate scalar product in sl x I-I(2) by means of 

((a, k ), (b, l) ) = - 2  R e  T r (  l k~r21cr2 + ab) .  

This scalar product defines in the standard way an isomorphism from the Lie algebra of 
SL ~ 1-I(2) onto its dual. The image of (a, k) e sl x H(2) will be denoted by {a, k}. 

With this notation, we obtain by a more or less straightforward computation, the following 
formula for the coadjoint representation 

Ad~A,n){a,  k} = { A a A  -1 + l ( A k A * e - H e  - H e A k A * e ) ,  A k A * } .  

Now we shall describe a canonical choice of representative of each coadjoint orbit. To 

do that, it is useful to introduce functions which remain constant along coadjoint orbits. 
One of these is I P I, defined by ]PI ({a, k}) = D e t  (k) ,  and is usually interpreted as being 

the mass square. 
Another of these functions is obtained from W({a, k}) = i(a k - k  a*). One can.prove that 

W(Ad~a,14){a, k}) = A W ( { a ,  k}) A*, so that IWl({a, k}) = D e t ( W ( { a ,  k})), is constant 
on each coadjoint orbit. The four-vector corresponding to W is the Pauly-Lubanski one. 

Tables 1 and 2 give a classification of the coadjoint orbits other than {0}. They are divided 
into nine different types, which are numbered in the first column. 

Each coadjoint orbit has a unique representative of those considered in the second column 
of Table 2. The form we have given to these representatives, is designed to ease the task of 
finding the canonical representative of the orbit of any given element. In fact, when {a, k} 
is given, the values of I PI and I W[ and the nullity or not of P and W (and D e t  a in the 
case where all the others values are zero) determine its type by means of columns 2-6 of 
Table 1. Then, with these values and the conditions in the third column of Table 2, one finds 
the canonical representative of the coadjoint orbit of {a, k}. 

The application of the methods of Section 8 to each of these representatives, leads to the 
following results. 

There are three singular orbits (i.e. orbits consisting of singular forms) other than {0}. Its 
canonical representatives are 
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Table 2 
Canonical representatives 

75 

Type Representative Conditions 

{ (1 ? ) } /m( -~/----'De~a)>0 
2 ~ 0 1 ,0 or ~ e ~+ 

3 I _x/rf~l(OOo),_sig(Tr(P))(~O)] ~ N  + 

4 li_~ (10 ?l),_sig(Tr(P))(l~)} W=sP 
./~_-IWI 

5 { ~ ( 1 0  01)_sig(Tr(P))[V/~ll} V - ' ~  -~N+U{0}' 

6 IO, _~S~ (10 ? 1 )  } - ~ - ~ e ~  + 

~(1_°,)1 

,~ ~ t~0) ~ t , 0  0 , ~ 

/ ( '  ) ~ ( ' 0  °,)1 ~ ° +  9 Oil -r/i - rj 6 {-1,+1} 

where r/ = 1, -1 .  ~-quantizable orbits are all of types 3, 6, 8, 9 and those of type 5 
corresponding to the case I WL = 0 

Quantizable but no R-quantizable are the orbits whose canonical representatives are 

1 01 , [-~n ( 0 - )  0} (type2), 

87r (~ ?l)'-sign(Tr(P))(lo0)l (type4), 
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1 01 I} 5), {8~T ( 0 _ ) , - s i g n ( T r ( P ) )  Icr~T ( type 

8rr ( 1 0 7 1 ) , ~ / - - ~  ( 0 7 1 ) /  ( t y p e 7 ) ,  

where,  in all cases,  T ~ 7 / +  X ---- 1, - 1. 
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